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INTRODUCTION

Let us consider the decision theory problem of classifying
observation X as coming from one of the m possible classes
(hypothesis) 0 = {01,02,........ , 0n }. Let P; = Pr {0 = 0;}, i
= 1,2,........ , n denote the prior probability of the classes and
let fi(x), f2(x ) ,........ f„(x) denote the conditional density
functions given the true class i.e. L(x) = Pr { X = x / 0 = 0]}, i
= 1 ,2 ,............ n. We assume that f,(x) and pL, i = 1,2,..........n
are completely known. Given that the observation X = x,-we 
can conclude that the conditional probability of 0 by the 
Bayes rule:

P (0i / x) = Pr { 0 = 0j / X = x }

I P j f j W

It is well known that the decision rule, which minimizes the 
probability of error, is the Baye’s decision rule, which 
chooses the hypothesis with the largest posterior probability. 
Using the rule, the probability of error for given X = x is 
expressed by

P (e / x) = 1 -  max [ P(0j / x), P (02 / x ) , .......P (0n / x) ],



FANG’S INEQUALITY

Prior to observing X, the probability of error P (e) associated with X is defined as the expected probability 
after observing it. i.e.,

P (e) = Ex [ l - m a x { P ( G 1 / x ) , P ( e 2 / x ) .................................... P (0n / x ) } ]

= 1 -  Ex [max { P(0! / x), P (02 / x ) , ..................................P (0n / x)} ]

Given an arbitrary code (s, n) consisting of words x(1), x<2), ................ x(s). Let X = (Xj, X2, X3, ........X„) be
a random vector that equals x(1) with probability p(xw), i = 1,2,3,........s, where X p(x(I)) = 1. [In other
words, we are choosing a code word at random according to the distribution p(x(l)) ]. Let Y = (Yls Y2,
................... Yn) be the corresponding output sequence. If P(e) is the probability of error of the code,
computed for the given input distribution, then

H ( X / Y) < H { p(e), 1 -p (e )  } + p(e) log (s -  1). (1.2)

In the development of the above-mentioned bound, we utilize several theoretic quantities as defined by 
Shannon. These are the joint entropy, Conditional entropy, and mutual information.

For a discrete random variable X, Shannon’s entropy [6] is given by

H (X) = - £ p ( Xi) l o g p ( x i ) .  
i=l

(1.3)

Based on this definition, the joint entropy, mutual information and conditional entropy are defined as

h (x , y > = - £ , z ,  p ( x i> y | ) i ° g p ( x i> y j )
i=l j=l

n n

I (X, Y)
X  X  p ( x i > y j ) i o g p ( x i , y j )

j= l_________________________

p (x i )  p (y j )

where

H ( X / Y) = X  H ( X / y j) p ( y j) f
j=l

H (X / yj) = - X  P(Xi / yj) log p(Xj / yj) 
i=4

(1 .4 )

(1.5)

and p (Xi, yj) and p(xs / yj) are respectively the joint and the conditional probabilities of X and Y. 
Renyi’s entropy [5] for X is given by

H <;(X) = —— log ^  p“ (x i) , (1.6)
1 - a  i=1

W h e re  a  is a  rea l p o s itiv e  c o n s ta n t d iffe ren t f ro m  1. T h e  (av e ra g e) m u tu a l in fo rm a tio n  a n d  (av erag e)
conditional entropy are consequently

H „ ( X ,Y )  =  - L  log  Y . Z  P“ (Xi,yj)
1 - “  i= l j= l

I«(X,Y) = - L
1 - a

H a(Y /  X)

lo§ Z  Z  { Pa (xi, yj)} / { pa'1
n 1=1 j=1

= Z p C x O H ^ Y / X i ) ,  
i=l

(xO p^ 1 (yj) }

where

(1.7)

( 1 -8)

(1.9)

H a(Y / x 0 = —L  log X  pa (yj/Xi)
l - a  H
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A large amount of work on probability of error has been done by M.E. Heilman and J. Raviv [3], D.G. 
Lainiotis [4]. In this paper, we extend our idea of Fano’s bound on the probability of error to a family of 
lower bounds based on Renyi’s definition of entropy and mutual information. We relate the probability of 
error of a code to Renyi’s entropy, a generalization of Shannon’s entropy. In section I, A systematic 
method of computing Fano’s bound for probability based on Renyi’s information is presented and in 
section II, the lower bound for the average probability of error is calculated in terms of channel capacity 
by using Renyi’s entropy. Shannon measure does not depend upon extraneous factors. But in practical 
situations extraneous factors plays an important role. In this paper, Bounds derived for probability of error 
depends upon parameter a, which represents these extraneous factors such as environmental factors, cost 
factors etc. As a particular case when a  -> 1, our result reduces to that one corresponding to Shannon’s 
entropy [6].

FANO’S INEQUALITY USING RENYI’S ENTROPY

In order to find the Fano’s bound for probability based on Renyi’s information we use Jensen’s 
inequality, which is as follows:

Assume g (x) is convex (if concave reverse inequality), x €E [a, b] then fo r
n

Wi = 1 , w ; > 0, w e have 
i=l

n  n
g t Z  Wi Xi ] < I  W i g ( X i ) .

i=l i=l
We also write the conditional probability of error given a specific class as

p (e / xi) = X  p  (yj! xi)

1 - P (e / X i )  = p (ys / X i )

(2 .1)

(2.2)

(2.3)

Theorem : 2.1 G iven an arbitrary  code (s, n) consisting  of w ords x(1), x(2), ............................x(s). L et X =
(Xj, X2, X3, .....  Xn) be a random vector that equals x(l) with probability p(x(l)), i = 1,2,3,........s, where

p(x0)) = 1. [In other words, we are choosing a code word at random according to the distribution p(x(1))
]. Let Y = (Yi, Y2, ...................Yn) be the corresponding output sequence. If P(e) is the probability of error
of the code, computed for the given input distribution, then

H « ( X / Y )  < H a { p(e), 1 -  p(e) } + p(e) log (s -  1). (2.4)

Proof: Consider Renyi’s conditional entropy [5] of Y given

H a(Y / Xj) = - i -  log £  p°(yj / x i) 
l - a  i=1

l
1 - a log [ z: Pa(yj /Xi)+ P°(y i /x i ) ]

i*j
(2.5)

l-a
log [ pa (e / X;) X  { p (yj /  xO / p (e / xO }“ + { 1 -  p (e / x0 }a ].

Using Jensen’s inequality, (2.2) and (2.3), we obtain two inequality for a  > 1 and a  < 1 cases 
a > 1

V 1
H  a(Y  /  x i) <  p(e /  Xi) ------  log p “ ' 1 ( e /  Xj) 1 P (y j1 x0 /  P (e /  x0 }a

l - a  yj

+ { 1 -  p (e / X i )  )  — 1— log {  1 -  p (e /  X i )  

l - a
(2 .6)
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a  < 1

or H a(Y / x j) > p(e / Xj) — log p 1 ( e / xO £  { P (yj / *0 / p (e / xs) }a
l - a  ^

+ { 1 — p (e / Xi) } ------  log {1 -  p (e / Xi) J0'1 (2.7)
1 - a

= H (e / Xi) + p (e / xj) ------ log X  { P (Yj / xO / p (e / Xj) }a.
l - a

Recall that for (s -  1) point entropy, we have

log X  { p (yj /Xi ) /p  (e/xO }“ < l o g ( s - l ) .  (2 .8)

equality being achieved for a uniform distribution. Hence, for a  > 1 from (2.6) and (2.8) we obtain 

H a(Y / x ;) < H a ( e /x O  + p ( e / x O  log ( s -  1).

Finally, using Baye’s rule on the conditional distributions and entropies we get the lower bound for 
P(e).

H a(Y / X) < H a (e) + p(e) log ( s -  1) 
or

H a ( X / Y) < H a { p(e), 1 -  p(e) } + p(e) log (s -  1).

T h e o re m : 2.2 The average probability  o f error p(e)of any code (s, n) satisfy

p(e) > 1 - (n C „ + log 2) /  ( log s)
w here C a is the channel capacity . C onsequently  if s > 2 n(C + 6) w here 5 > 0, then

(2.9)

n(Ca + 5) < nCa + l  or p ( e ) >  1 - (C „ + 1/n) / (C a + 5) ^  1 - [ C a / (C a + 5) ]

Thus if  R > Ca, no sequence o f  codes ([2nR], n) can  have an  average probability  o f  erro r w hich -> 0 as 
n —> oo , hence no sequence of codes ([2nR], n, A*,) can exist w ith lim Xn = 0

n oo

P ro o f: C h o o se  a co d e  w o rd  a t ran dom  w ith all w o rd s e q u a lly  lik e ly , that is  let X  and Y  b e  as in the
Fano’s inequality with p (x(0) = 1/s, i = 1 ,2 ,.............. , S. Then H (X) = log S SO that

I « ( X / Y )  = l o g s - H a ( X / Y )  (2.10)

L e t  X i ,  X 2, .................  X n be a  seq u en ce o f  inputs to a d iscrete m e m o ryless chan nel, and Y j ,  Y 2 , ............Y n
the corresponding outputs. Then

n
I a (Xi, X2, ...., XD / Yi, Y2,...,Yn) < ^  I a (Xj / Yj) with equality if and only if Yi, Y2, ..........Yn are

i= l
independent.

Using above, we have

I « ( X / Y )  < X  I a (Xj / Yi) 
i=l

(2 .11)
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Since I a (Xj / YO < C a (by definition of capacity), (2.10) and (2.11) yield
logs —H a ( X / Y )  < n C a (2.12)

By Theorem (2.1),
H a( x / Y) < H a { p (e ) ,  l - P ( e )  }+  p (e) l o g ( s - i )

Hence
H a (X / Y) < log 2 + p(e) log (s) (2.13)

The result now follows from equation (2.12) and (2.13). 

i.e ____
lo g s  <  (n C a + log 2) /  ( 1 - p(e) )

or p(e) > 1 - (n C a + log 2) /  ( log s)

PARTICULAR CASES

(i) When a  -> 1 equation (2.4) reduces to (1.1) refer Ash R. [1]
(ii) WTien a  -> 1 equation (2.11) and (2.12) reduces to (2.8) refer Ash R. [1].

CONCLUSIONS

communication theory. However, either one of these bounds can 
be utilized in existing practice interchangeably. Finally a candid 
view has been derived from the study is that these kinds of 
information which is generally theoretic bounds always require
a n  in f o r m a t io n  w h ic h  is  g e n e ra l ly  s u f f ic ie n t  to  g e t  a n  e s t im a te  o f
the probability of error itself. As such these bounds could be
favourably helpful in determining the confidence interval for
this probability.

Concludingly, it can favourably asserted herewith that with the 
help of Fano's inequality we can also propose to derive the 
relationship among entropies.
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Fano's inequality is an important outcome in Shannon's 
information theory. This bound is widely appreciated and has 
acquired wide application in the different fields of communication 
theory. Fano’s lower bound has considerably significant effect as it
provides th e  a n a ly s t  to  f in d  l im it  o f  a t t a in a b le  p e r f o r m a n c e  in
communication channel, whereas, the upper bound, on the other
hand, assures that the worst-case performance of the final product
is improved with in the known bounds. However, Fano's bound for 
probability based on Renyi's entropy and the expression for average 
probability of error is discussed in the present paper. It has amply 
been demonstrated under numerical dimension the application of 
proposed bounds to realistic situations (problems) in
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