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SSTRACT
(ling at sea is an essential and vital 
eration for warships. Not only 
:ing wartime but also whei i ships 
duct exercises during peacetime, 
liishment at sea is carried out to 
insfer men and material from one 
ito another. Fueling is a subset of 
■ replenishment at sea operations, 
ie fueling operation is not carried 
carefully, either a fuel spillage 

urs which is a fire hazard and 
isumes many m an-hours in 
ning the mess, or the fueling 
ition increases that makes the 
ship and the oil tanker a good 
| for the enemy. In this paj ier, the 
pal scenario of fueling ai sea is 
cussed. A m a th e m a t ic a l  
jamming model is formulated 
solved using the optimal control 
ry. This model is based on the 
lor’s experience in fueling 
der class frigates, a type of 
hip used by many countries.
I rules of thumb are devised to 
ate the pumping rate in the 
ig process. The rules would 
rate the ship's Engineer Officer 
iderstand the control action 
)ut getting involved in the 
ematical jargon.

IN TRODUCTIO N
Warships conduct exercises at sea on a regular basis. There are two 
main objectives for conducting war exercises: first to keep various 
systems on board in operational condition, and secondly to 
impart training to new members of the ship's crew. A fleet is 
comprised of many ships, generally of different functional
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ut ilities, such as an aircraft carrier, anti-submarine ships, frigates, 
destroyers, mine sweepers, an oil tanker, and a cruiser etc. Ships 
of one or more fleets go together for conducting war exercises in
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an open sea and may stay there for 
weeks.

An important and inevitable part of 
an e x e r c is e  fo r w a rsh ip s  is 
"replenishment at sea." During this 
operation, men and materials are 
transferred from one ship to another 
while ships move at 15-20 knots. 
Fueling at sea is concurrently carried 
out with the "replenishment at sea" 
operation. During the operation, fuel 
is pumped to a warship from an oil 
tanker, also a member of the warship 
fleet. In general, an oil tanker is 
capable of fueling three ships 
simultaneously; one on its port side, 
another on its starboard side and the 
third at its astern. A frigate or a 
destroyer has two fueling points: one 
on its forward portion and another 
somewhere aft of its superstructure, 
generally on its quarterdeck. A 
fueling point is where a fuel delivery 
hose from an oil tanker is connected 
to receive fuel. Bigger ships may have 
more than two fueling points.

The objective of this paper is to

analyze the fueling operation of
warships at sea and suggest an 
optimal operating procedure or a set 
of guidelines. We form ulate a 
mathematical programming model 
of the fueling process and then solve 
it. The model provides s j q  insight into 
the fueling operation. The suggested 
procedure wall help the ship's staff 
earn* out fueling more efficiently and 
econom ically. The next section 
describes the fueling process. The 
section on problem formulation 
describes the mathematical model. A 
solution to the problem is obtained 
and explained thereafter. v

P R O B L E M  D E S C R IP T IO N
During the replenishment at sea, two 
or more ships move together at the 
same speed of fifteen to twenty knots, 
at a distance of eighty to one hundred 
feet, and on the same course. 
Replenishment at sea is a very well 
planned activity. Each member of the 
team involved in the activity has to be 
m eticulous at his task. At the

Fuel from ihe Fueling Point

▼

predetermined time, the warship to be | 
fueled approaches the oil tanker of the I 
fleet on its starboard or port side, I 
becomes parallel to the tanker, and 1 
adjusts its speed and course to that of 
the oil tanker. After the two ships have 
stabilized in their speed and the 
course, the tanker shoots a thin rope 
to the warship and a designated 
member of the crew pulls the rope.

a

f

Over flow

OVERHEAD FILLING TANK

Fuel

To Forward 
Storage Tank:

FIGURE 1: A diagram showing the overhead filling tank 
and inlet and outlet pipes To Aft 

Storage Tank
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;rope gradually becomes thicker,
!eventually, the fuel delivery hose 
iched to the rope is passed on to 
warship. The hose is then 

mected to the warship's fueling 
it.

a "start pumping" signal from the 
ship, the tanker starts pumping 
, which Hows to an overhead 
ng tank through a pipeline from 
fueling point. At its bottom, the 
ig tank has an outlet pipe that 
icates into two branches: one 
Is to the forward storage tanks and

Itherto the aft storage tanks, both 
,id in the double bottom of the 
).At the bifurcation point, there is 
lange over valve that lets the fuel 
(either to the forward tanks or to 
taft tanks. Fuel flows by gravity
:nthe overhead-filling tank to the
age tanks as shown in Figure 1.
chip's Engineer Officer, in charge

lie fueling operation, stays at the
ling point during the fueling 
scess, monitors and controls the

['•pumping rate. He has a direct 
phone line connected to the
set, and another connected to a 
lion near t he f il lin g  tank.

inicians are placed at appropriate 
us to open or close the valves to
|s fuel storage tanks. While 

lug, it is required to maintain the
ŝtability. To do so, fuel valves are

aperated as to let the fuel flow 10

[?than one tank simultaneously,
son the port side and the other on 
starboard side. The state of the 
hanks and the level of fuel in the 
Jig tank is continuously monitored 
'informed to the Engineer Officer, 
ending on the state of fuel storage 
(s and thr. overhead-filling tank, 
twarshia Engineer O fficer 
ununicati s with the Engineer

l
• \
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Officer of the tanker either to vary the 
pumping rate or to stop pumping.

The essential point to note here is that 
the flow of fuel, to and from the filling 
tank, is required to be monitored and 
regulated continuously, mainly, to 
avoid the overflow of the filing tank. 
When the filling tank becomes full, it 
overflows on to the ship's main deck 
or to its sides. Fuel spillage is 
considered to be highly undesirable. 
It is a great fire hazard. And secondly, 
it takes many man-hours to clean 
spillage from the deck and sides. If 
the Engineer Officer is extra cautious 
and maintains a low level in the filling 
tank, the fueling time increases 
unnecessarily and excessively. Since 
the two ships, the tanker and the
warship, move at a constant speed on
a c ons t a nt  co u rse  dur i ng the
replenishm ent operation, their
maneuverability is lost, and they

become a good and bigger target for
the enemy. Therefore, replenishment
at sea is ought to be performed in the 
minimum possible time.

When the required quantity of fuel
has been received, pumpi ng is
slopped. Then, the fuel delivery hose
is blown through with air to empty it
out. It is disconnected from the fuel
tank; its o p en  m outh  is b locked  w ith a 
steel plate to avoid any spillage in case 
traces of fuel are still left in the hose, 
and the hose is pulled back. During
the replenishment operation, fresh 
water and/or men and material can 
also be transferred from one ship to 
another while fueling. If no other 
replenishment is going on, then the 
warship moves away from the tanker 
and another warship approaches for 
fueling and replenishment.

The fleet commander records the

■  April 2004

following three time durations during 
the replenishment operation:

1. The time a warship becomes 
parallel to the tanker to the time the 
delivery hose is connected at the 
fueling point and the tanker is 
informed to start pumping.
2. The time taken from "start 
pumping" to "stop pumping" i.e.. the 
fueling duration. This helps compute 
the average fueling rate.
3. The tim e taken from "stop 
pumping" to the final disconnection 
of the warship from the tanker.
The time durations at (1) and (3) 
above are helpful, in evaluating and 
improving tire performance of the 
team responsible for connection and 
disconnection, whereas the time
d u ra tio n  at (2) e v a lu a te s  th e
performance of the engineering staff
engaged in the fueling operation.

An attempt was made to find out from
open literature whether any research 
has been done on the topic of fueling

at sea. Breickner (1962) describes the
progress made over the last decade in

replenishment techniques, but does
not mention anything about the

fueling process. Dankers and Huntley
(1963) describe logistics development

and include the equipment used in
replenishm ent at sed. M orisseau 
( 1972)  d isc u sse s  a bout  f ut ure 
d e v e l o p m e n t s  i n m a k i n g
replenishment ships. These articles 
are on replenishment-at-sea in Naval 
Engineers Journal, but none were 
found on fueling at sea, addressing the 
problem described above. These 
articles include mainly the progress 
made in transferring material and 
ammunition to warships at sea, and 
how rigs, various components, and 
ships used for replenishment evolved.
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Jaconson, Lee and Speyer (1971) 
derive necessary conditions for 
optim ality. M aurer (1977) and 
McIntyre and Paiewonsky (1967) 
describe solution methods for solving 
optim al control problem s with 
bounded state variables. Sethi and 
Thompson (1981) present various 
applications and scenarios of optimal 
control theory, formulate and solve 
them.

P R O B L E M  FO R M U L A T IO N
It is now obvious from the scenario 
described above that the goal is to 
minimize the fueling duration, or to 
m axim ize the quantity o f fuel 
received on board a warship during 
the pumping time, T. The constraint is 
that the filling tank must not overflow. 
This problem is formulated as a 
mathematical model using optimal 
control theory. In the model, the fuel 
pumping rate is a control variable and 
the fuel level in the filling tank is a 
state variable.

The Param eters are defined as 
follows:
A = the cross-sectional area of the 

filling tank.
d = the diameter of the outlet pipe 

from the filling tank, 
a = the cross-sectional area of the outlet

pipe from the filling tank, where 
-)

a= TTpd^/4. 
g = acceleration due to

gravity = 9.806754 m/sec^ 
h = the height of the filling tank 

beyond which spillage occurs.

The variables are:
p (t) = the pumping rate at time t. It is 

the control variable, 
z (t) = the fuel level in the filling tank at 

time t. It is the state variable, 
z (t) = z(t)/dt = the rate at which the

fuel level varies in the filling tank.

Using the variables and parameters, the following expressions can be stated:
Rate of fuel in-flow to the filling tank at time t = p(t),
Rate of fuel out-flow from the filling tank at time t = a (2gz(t))
The net rate of flow into the filling tank at time t is: 
p (t)-a (2g z(t))0,5

The above equations are based on the assumption that the velocity of fuel on the 
surface of the filling tank is practically zero.
Now, the objective function is:

T

Maximize { J/0= Ip (t)d t } ...................................................  (1)
Subject to
z = {1 /A} { p(t)- a Sqrt (2 g z(t))}, z(0) = 0 ................................................. '.. (2)

z(t) <  h ...................................................  (3)

Here, the interpretation of the objective function (1) is that we are trying to find 
the trajectory of the state variable z(t) so that the area under the curve p(t) is 
maximized. This also means that the quantity of fuel received in time T is 
maximized. Or, time T is minimized for a given quantity of fuel received. The state 
equation (2) expresses the rate at which the fuel level in the fillin g tank varies, with 
the initial condition of no fuel in the filling tank at the start of the fueling 
operation. Inequality (3) restrict the fuel level to at most h, the critical level, 
beyond which spillage occurs. The conditions at (4) restricts the control variable 
to be non-negative and less than or equal to the maximum pumping rate. This 
problem has the Lagrange form.

S O L U T IO N  T O  T H E  P R O B L E M

While solving the problem, z may be used instead of z(t) and p, instead of p(t). Let 
X be the adjoint variable.
The hamiltonian is: 1
H = p +  {A /A} (p(t) - a S q rt (2 gz(t))} ..................................................  (5)
Equation (5) is linear in p. Therefore, the first derivative o f the Hemiltonion,

Hp = 1 + X /A ..................................................... (6)

For such systems, Hp = 0 implies that the coefficient of the linear control t ?rm 
vanishes identically along a singular arc according to Sethi and Thompson (1931). 
The control is not determined in terms of x and X by the Hamiltonian maximizing 
condition Hp=0. Instead, the control is determined by the requirement that the 
coefficients of these terms remain zero on the singular arc. Therefore,!the time 
derivative of H must be zero. Having obtained this condition (or setting higher

r V'
time derivatives equal to zero) along the singular arc, an additional: necessary 
condition analogous to the concavity condition needs to be checked. For a 
maximizing problem with a single control variable, the generalized Legendre 
Clebsch condition is:
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f-l)k a/a p[(d/dt)2k Hp ] < 0 , k = 0 , f ,2 , ...........  (7)

In order to get an adjoint equation and multipliers 
associated with the constraints, a Lagrangian function 
should be formed. Let p be the multiplier associated with 
constraint (3).Then, the Lagrangian is stated as follows:
L=H + p (h-x) ............................ (8)
Or L= p + {X /AMp(t)- a Sqrt (2 g z(t))} + p (h-x) .. (9)

From the Lagrangian, the joint equation is obtained as 
follows:

DX/dt = -'<■) L/d z = p + (a X /A)(Sqrt (2 g)) (0.5 z "-5)
=p+ (a A / 2A)(Sqrt (2 g/z)), A.(T) = 0  ...........  (10)
îd p mi st also satisfy the following complementary
Ickness conditions:
Bfe: . . i
h-z>0, p >  0, and p(h-z) = 0 .......(11)

Based on the above equatior is and conditions, we can state 
that the optimal control is bang-bang plus singular. Let 
p*(t) be the optimal pumping rate, then 
P*(t) = bang (0, Pmax; 1 + X /A) .......................... (12)

And the singular arcs must satisfy the following equation: 
pp=l+A /A = 0  .......................... (13)

Now, the optimal control dong the singular arc can be 
obtained by: 
d/dtHp= dX/dt=0  

Or
dX/dt = p + (a X / 2A) (Sqrt (2g/z))=0 ................... (14)

(ierentiatirigonce more with respect to time t, we obtain: 
l2/dtz(Hp)=(-aA / 4A)(Sqrt(2g))(z'1,5) (dz/dt).... (15)

Or
f-aX / 4A) (Sqrt (2 g)) (z ' l 5)(p - a v'2 g z) = 0 .........(16)

Equation (16) implies that a'ongthe singular arc either

ip* a Sqrt (2gz)} = 0
or z = 0 ............................... (17)

[he derivative of the left hand side of (16) with respect to p 
also satisfies the generalized Legendre Clebsch condition.

The adjoint equation (10) involves z. and the state equation 
(2) involves p, and p depends on X. Therefore, initially we 
cannot solve equation (10) until the differential equation 
(2) is solved and equation (2) cannot be integrated either. 
The way out of this dilemma is to use some intuition. Our 
goal is to maximize the objective function value J = / p(t) dt, 
and it is equivalent to maximizing the total area under the 
curve p(t). This area can be maximized only if the pumping

rate is initially increased to pmax. Therefore, 1 + X /A must 
be positive for z <  h. And when z = h, the singular control 
ought to be applied. With this assumption, we solve the
differential equation for z.

z = p/A - (a/A) (Sqrt (2 g z)), z(0) = 0 .............  (18)
Let y = z -5, then y = dy/ dt 

y = (0.5 z -.5 )(z)
Or

2 y y  = z ..............(19)

Substituting the value of z ,5 and z, we get 
2 y y = p/A - (a/A) (Sqrt (2 g)) (y).
And after algebraic manipulation, 
y = {p/A-(a/A) (Sqrt (2g))(y)}/2y 

Or
dy/dt = {p/A - (a/A) (Sqrt (2 g)) (y)} / 2y 

Or
y dy/{p/A- (a/A) (Sqrt (2 g))

(y)} = 0.5 dt . . . . . . . . . . (2 0 )
Integrating both sides,
J y dy/ /{p/A - (a/A) (Sqrt (2 g))
(y)l = J0.5 dt .............  (21)
We know that

/  y dy / (a + by) = y/b - a Ln(a + b z) / b2 .............  (22)

Applying this rule, the solution to (21) is as follows:
Ay / a(Sqrt (2 g ))- {A p / 2 a2 g}Ln {p/A - (a/A) (Sqrt (2 
g))(y)l = 0.5 t + c .............  (23)

Here, c is the constant of integration. On substituting y for z
0,5P we get the following expression:
Az0,5 / a(v'2 g- {Ap / 2 a2 g}Ln {p/A - (a/A) (\ 2 gz)}

= 0.5 t + C ............  (24)
Since z(O) = 0, the constant of integration c is as follows:
c = (A p/ 2 a2 g) Ln (p/A) . . . . . . . . . . (25)
Substituting the value of constant c, we get
-Az°-5 / a(Sqrt (2 g) - {Ap / 2 a2 g}Ln {p/A - (a/A) (Sqrt (2 gz))}
= 0.5t- (A p /2a2g)*Ln(p/A) g)*Ln (p/A)

After simplifying the above equation, the following 
expression is obtained:
(a/p) Sqrt (2gz) + Ln{ 1 -(a/p) Sqrt (2 gz)}
= (a2g/A p )t ............. (26)
Equation (26) does not yield a close form solution of z. To 
obtain z(t), a trial and error method need to be used. If we 
know the value of the parameters, then z(t) can easily be 
computed using Microsoft' Excel. Its special in-built
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program, Goal Seek, can easily compute the height of fuel in 
the tank, z, for different values of time, t.

Since 1 + X /A is positive when the level of the Filling tank, z, is 
less than h, the pumping rate at the beginning can be 
increased to the maximum possible value that the pipeline 
or the fuel hose can hold. Subsequently, when the level of 
the filling tank approaches h, a singular control needs to be 
applied.

.Along the singular arc, it has been determined in equation 
(17) that p - a Sqrt (2 g h) = 0 

Or
p = aSqrt (2 gh) ................................... (27)

above. Therefore, from the foregoing, the following thumb 
rules for theship’sEngineerOfficercan bestated:
1. After the fuel hose is connected at the ship's fueling 
point, instruct the oil tanker to start pumping at the 
maximum rate.
2. Monitor the fuel level in the overhead filling tank 
continuously.
3. When the filling tank level approaches the top of the 
filling tank, instruct the oil tanker to reduce the pumping 
rate in accordance with Equation (27).
That is, p = a v;2gh.

Equation (27) would be helpful in 
calculating the pumping rate when the 
fuel level approaches the critical point, 
i.e., tire height of the overhead-filling 
tank.

COMPUTATIONAL EXPERIEN CE

The cross-sectional area of the filling 
tank, A, is assumed to be 10 square 
meters and the diameter of the outlet 
pipe, d, is assumed to be 0.1 meters. For
pumping rates of 300 to 600 cubic meters,
the level of fuel in the filling tank, z, is
computed for the first ten minutes using
e q u a t i o n  (2 6 )  a n d  p lo t t e d  a g a in s t  t im e .

Time tin  
Minutes

T able 1: Fuel level in  th e  filling ta n k

Pipe Diameter, d = 10 centimeters
Filling Tank Cross-Sectional Area, A = 10 square meters

Fuel Level in the Filling Tank at the Following Pumping Rate
300 400 500 600

0.000 0.000

0.560 ‘ 0.868
1.041 1.635
1.473 2.340

1.869 2.999
2.237 3.620
2.580 4.206
2.901 4.764

3.202 L 5.296
3.487 5.804

3.757 6.291

These calculations are listed in Table 1. In 
order to evaluate the effect of the outlet 
pipe diameter, the calculations are 
repeated for d = 0.15 meters, and are 

placed in Table 2. For various pumping 
rates, fuel levels in the filling tank are 

plotted against time and the graphs are 
placed at Figures 1 and 2
(See in Next Page).

S IM P L E  R U L E S  F O R  T H E  S H I P ’S 
E N G IN E E R  O F F IC E R
In the previous sections, a mathematical 
programming model is formulated and 
its solution is obtained. However, 
Engineer Officers of warships may not 
like to get involved in all the jargons used

T able 2 : Fu el level in th e  filling tan k
Pipe Diameter, d = 15 centimeters
Filling Tank Cross-Sectional Area, A = 10 square meters

1

m
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Fuel Level in the Filling Tank
Pumping Rate 300 - 600 cu. m. per hour

Sqrt(2 g h). Let us assume a flow 
factor (always less than 1). The ship’s 
Engineer Officer can estimate the 
correct value of the flow factor 
because different ships may have 
different flow factors even though
they are of the same class. Therefore,
Equation (27) should be modified to 
read as:
p = Flow Factor {a Sqrt (2 g h)}

CONCLUSION

Bigure 2: Graph Showing Fuel Level in Filling

|
r 4mk for outlet pipe diameter of 10 centimeters.

Continue with the pumping operation until the

quired amount of fuel has been received on board, and 
cppumping.

lie pumping rate in 3 above is calculated on the 
sumption that there is no pipe friction and there is a 
nooth flow of fuel from the filling tank to various storage 

inks. In actual practice this is not true. Pipes have different 
matures and joints that cause resistance and slow down
How of fuel through the pipes. In addition to this type of

istance, the length of the pipeline from the filling tank to
storage tank plays an important role and further
luces th ; rate of flow. Also, the specific gravity of the fuel

its effect on the flow rate. The specific gravity of a liquid 
dependent on its temperature. Therefore, in actual 
:tice the rate of flow throuj h the pipeline is less than {aFuel Level in the Filling Tank 

Pumping Rate 300 - 600 cu. m. per hour

■ *- -v ♦  ♦ ♦ — ♦ —  ♦

Time in Minutes

In this paper, a real-world scenario is 

described and formulated as a mathematical model. It is a 
basic model and several other complexities are not included 
in it. The final outcome of the analysis presented in this

paper appears to be intuitive, but this realization is only 
after the analysis is done. The author was an Engineer 
Officer in the Indian Navy and fueled Leander Class frigates 
and other types of warships at sea. The model and the 
thumb rules derived from its solution will benefit engineer 
officers of warships. Operating procedures for fueling at sea 
can be formulated based on this research.
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Figure 3: G raph S h ow in g Fuel Level in Filling Tank  
for outlet p ip e d ia m e te r  o f  15 c e n tim e te rs .
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