
ABSTRACT
H igh qu ality  a u d io  signals a t  

44.1 kH z with sam p lin g  rate o f  16 bps  
h av e very h igh  b an d w id th  o f  a b o u t  700 
kbits p er  sec. This covers th e  en tire  
a u d ib le  fr e q u e n c y  ran g e  o f  h u m a n  
hearing. Audio compression algorithms 
are requ ired  to redu ce this b it  rate as  
m uch as p ossib le  w ith little or  no loss in  
p erceiv ab le  a u d io  quality. The m ain  
m otivation s fo r  a u d io  com pression  are  
th e n eed  to m in im ize transm ission  costs, 
prov ide cost effic ien t storage a n d  the  
d em an d  to transm it over ch an n els  o f  
lim ited  capacity  su ch  a s  wireless ce llu la r
a n d  satellite  com m u n ication . R ecen t■
research in au d io  com pression  exploits  
m odels o f  speech  produ ction  an d  
au d itory  perception.

In  th e  p r o p o s ed  com p ress ion  
algorithm  sources o f  irrelevancies a n d  
redundancies in the a u d io  signal are  
exploited . This com pression  algorithm  
em p loy s  an  o p t im a l  w a v ele t  b a s e d  
cod in g  sch em e to ex p lo it the p ercep tu al 
m ask in g  e ffec t using psychoacou stics  
m odel. The p rop osed  sch em e uses vector  
qu an tization  (VQ), to e lim in ate  sou rce  
redu ndancies there by reducing  storage  
a n d  processing tim e complexity'.



INTRODUCTION
The well-known audio compression algorithms 

used in MPEG I and MPEG II standards are MUSICAM 
(Masking-pattern Universal Subband Integrated Coding 
and Multiplexing) and PAC (Perceptual Audio Coder) 
respectively.

V
MUSICAM uses Fast Fourier transform for power 

spectral estimation. Based on the estimated power 
spectrum, a masking curve is calculated. This masking 
curve is used for deciding quantization step size for each 
block. The information of the step size, number of steps 
etc. is also transmitted along with the quantized samples 
as overhead. This increases the number of bits transmitted 
[1]. In PAC system, the signal is synthesized through a filter

bank based on perceptual model. Then the output is 
quantized using PCM quantization. The PAC system does 
not use entropy coding, the quantized values are sent 
directly. The m axim um  com pression achieved in 
MUSICAM and PAC is 2.74 and 1.823 respectively. Further 
increase in the compression ratio, deteriorates the audio 
signal quality because of the constant bandwidth of the 
subbands used for computing masking threshold, which 
are not coincident with the critical bands of hearing. Also 
Fast Fourier transforms used for spectral estimation are 
unsuitable for non-stationary audio signals because they 
have fixed resolution and do not give the timing 
information. This timing information is essential for pitch 
of good quality of audio signal.
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The proposed scheme explained in this paper employs an optimal 
Wavelet [2] [3] based coding scheme to exploit the perceptual 
masking effect using psychoacoustics model and Vector 
Quantization to eliminate source redundancies. Psychoacoustics 
model is used to determine the portion of the audio signal that can 
be removed without loss of quality of sound to the human ear. The 
Discrete Wavelet Transform (DWT) used can decompose an input 
audio signal into non-overlapping frequency bands 
corresponding to critical bands of constant hearing [4]. This helps 
in employing the psycho- acoustic model easily for calculating the 
masking threshold in each frequency band [5]. The proposed 
technique achieves better compression ratio because with Vector 
quantization it is not required to store or to transmit extra 
information. This results in reduction in storage and processing
com plexity  w ith  b e tter quality o f  sou nd  signal. T he prop osed
scheme is implemented using MATLAB 7. Its performance in 
terms of Signal to Noise ratio (SNR), Peak Signal to Noise Ratio 
(PSNR), Normalized Root Mean Square Error (NRMSE) and 
Compression Score is evaluated for different types of test signals.

AUDIO CODING USING DWT AND VQ

In order to compress data by a large factor, an algorithm 
must be lossy and it must throw out some of the less important
in fo rm atio n . In  th e  case  o f an audio signal, it is assu m ed  th at
throwing out portions would result in a noticeable degradation in
sou nd  quality. However, use o f p sych o acou stics  m od el help s in
minimizing the audible effects of lossy compression.

The proposed scheme is shown in Figure 1(a) and Figure 1 
(b). In the scheme, an input audio signal is windowed and divided 
into shorter segments. The audio data is segmented using the 
square root of the Hann window w(n) = 0.5 -  0.5 cos (2n / N). In the 
following experiment the segment length used was 1024 samples 
(23.2ms). The DWT of each segment is carried out thereby yielding 
the transform coefficients at different resolutions.

DISCRETE WAVELET TRANSFORM

The DWT coefficients are computed using the Wave packet 
representation [4] [5], as shown in Figure 2. Since the audio signals 
have a higher bandwidth of 20 kHz as compared to speech, the 
task of data compression becomes easier if the coarser i.e. low 
frequency and finer i.e. high frequency details of the signal are 
separated out and then these parts are coded separately. Hence in 
such a case it is preferable to decompose both the high pass and 
the low pass bands as opposed to decomposing only the low pass 
band in the conventional wavelet transform representation. In 
this algorithm, each audio segment is passed through a bank of 
perfectly reconstructed low pass and high pass filters followed by 
decimators. The output of the high pass filter is sub sampled by 
two and collected as the DWT coefficients at one particular 
resolution. The output of the low pass filter is also sub sampled 
and again passed through the same filter bank to compute the 
DWT coefficients at a lower resolution. This recursive procedure is 
carried out till the lowest resolution coefficients are obtained and 
the desired decomposition  ̂is achieved. For the last stage of 
decomposition, the output of both the low pass and high pass 
filters are sub sampled and collected as the DWT coefficients at 
the lowest resolution. This can expressed as

y,o„. [k] =S°° x[n]. h[2k-n] (2.1)

yhigh [k] =n =-„ x[n]. g[2k-n] (2.2)

where ylow [k] andyhigh [k] are output of the low pass and high 
pass filters after sub sampling by 2. h[n] and g[n] are impulse 
response of low pass and high pass filters. The two filters are 
Quadrature Mirror Filters and odd index alternated reversed 
version of each other. They are related as

!
g[L-l-n] = (1) .h[n] (2.3)

|
L is the length of the filter in number of points [8].

* For all figures and tables please refer to the Appendix 
This Wavepacket representation is applied to the input 

audio signal of 22 kHz bandwidth and decomposed it into two 11 
kHz bands. These two bands are further decomposed in four 5.5 
kHz bands and th is d eco m p o sitio n  co n tin u e s  till critica l bands of
frequency are obtained, this is shown in Figure 3. In Figure 3 the 
figures in the brackets shown on the right side are critical bands in 
kHz. In the MATLAB simulation, the DWT coefficients for each 
separated critical band are extracted with the help of wavelet 
corresponds to Harr and Daubechies' 8 tap filter [7]. The shape of 

j the wavelet chosen is decided by the coefficients of quadrature 
; mirror decomposition filter and the wavelets Harr and,
I Daubechies used provides orthogonal wavelet decomposition.

The threshold levels are calculated using approximation results'
; from psychoacoustics model.

PSYCHOACOUSTIC MODEL

The psycho acoustic model is based on many studies of 
human perception. Effects due to different sounds in the 
environment and limitations of the human sensory system lead 
to facts that can be used to remove portions of a signal that are 
inaudible and indiscernible to the average human being. The two 
main properties of the human auditory system that make up the 
psychoacoustic model are absolute threshold of hearing and 
auditory masking [10] [11].

Absolute Threshold of Hearing (ATH) in dB Sound
Pressure Level is determined as:

-0.8 (-0.6*(ff/1000)-3.3)A2) 3 4ATH = 3.64 x(f/1000) - 6.5e + 10 x (f/1000)
(dBSPL) (2.4)

Where f is the frequency in hertz and ATH is Absolute 
Threshold of Hearing in dB Sound Pressure Level. Thus, if a signal 
has any frequency components with power levels that fall below 
the ATH, then these components can be discarded, as the average 
listener will be unable to hear those frequencies of the signal 
anyway.

The concept of auditory masking [12] is that the stronger 
signal will mask the weaker signals at nearby frequencies and 
making them inaudible to the listener. For a masked signal to be 
heard, its power will need to be increased to a level greater than 
that of a threshold that is determined by the frequency of the 
masker tone and its strength. In the compression algorithm, 
therefore, tone masker, noise masker and masking effect due to 
these maskers is determined. If any frequency components 
around these maskers fall below the masking threshold, they can 
be discarded [13] [14].

|

For the purposes of this project, a tone is determined as a 
frequency, which has a sharp peak in the frequency spectrum. To 
determine whether a certain frequency is a tone or masker is done
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with the help of following definition:
Afrequency f is a tone if its power P [k] is:
1) Greater than P[k-1] and P[k+11, i.e., it is a local maxima.
2) 7dB greater than the other frequencies in its neighborhood, 

where the neighborhood is dependent on f:
(i) If 0.17 Hz < f < 5.5 kHz, the neighborhood is [k-2.. .k+2].
(ii) If5.5kHz=<f< 11 kHz, the neighborhood is [k-3...k+3].
(iii) If 11 kHz =< f < 20 kHz, the neighborhood is [k-6... k+6].

8. If  ̂ 7 , stop; otherwise continue.
D (k)

9. For k = k+1. Find new reconstruction values { Yfk) } i=1 that are 
the average value of the elements of each of the quantization 
regions. {V ^ 11}  Go to step 6.

PERFORMANCE OF THE PROPOSED ALGORITHM
VECTOR QUANTIZATION (VQ)

Vector quantization is a pattern matching procedure. In 
VQ source output is grouped into blocks or vectors. For example, L 
consecutive samples of speech are treated as the element of an L 
dimension vector. This vector of source output forms the input to 
the vector quantizer. At the encoder end and decoder end, the 
vector quantizer consists of a set of L-dimensional vectors, which 
is called the codebook of vector quantizer. Best-matched 
representative code vector of the L dimensional input vector is 
chosen from the codebook at the encoder and its address, is sent 
to the receiver where an exact replica of the codebook is stored. 
The decoder on receiving the address, outputs the reconstructed 
vector from its codebook [15] [16]. Thus VQ saves the number of 
transmitted bits and also simplifies the decoding process. VQ is
hence ideal for single encoder and multiple decoder scenarios, for 
example, in m ultim edia ap p lica tion s. In m u ltim edia, 
considerable computational resources are available for encoding 
operation. However as the decoding is to be done by software the 
required amount of computational resources at the decoder is 
very less [18]. The most prevalent technique for codebook design 
in vector quantization is LBG algorithm generalized by Linde, 
Buzo and Gray [17].

The algorithm developed for audio data compression using DWT 
andVQ based on LBG algorithm is defined as follows:
1. Segment the audio data using the square root of Hann 

window (n). The Hann window for length N is co(n) = 0.5 0.5 
cos (2n/N).

2. Extract the coefficients of audio signal by Discrete Wavelet 
Transform using filter bank of low pass filter h[n] and high 
pass filter g[n], g[n] = (-l)nh[L-l-n].

3. Determine the threshold level "©"based on psychoacoustic 
model and neglect DWT coefficients with values below global 
threshold level and assign them zero value.

4. Encode consecutive zero valued coefficients with two bytes. 
One byte is used to specify a starting string of zeros and the 
second byte keeps track of the number of successive zeros.

5. For quantization, start with an initial set of DWT 
reconstruction values { Y - 0)} ^ 0 and a set of DWT training 
vectors {Xj^n=I .Set k=0, D<o: = 0. SelectThresholde.

6. Find the quantization regions j are given by,

r?> = fc,:d(p,,YJ)<dQr,,Yj yfj*i}
V,

i = 1, 2 , ....... M. We assume that none of the quantization
regions are empty.

7. Compute the distortion D:k) between the training vectors and 
the representative reconstruction values.

1 D ^ = ± \ \ \ X - Y ^ \ \ fA X )d X
1=1 yik)

The proposed audio coding algorithm uses DWT to exploit the 
perceptual masking effect in human hearing process and uses 
vector quantization to eliminate source redundancies. The
proposed algorithm is implemented using MATLAB [19] and
various experiments are conducted to evaluate the performance
for three different types of test signal viz, a male voice test signal, a 
female voice test signal and an instrumental sound test signal. 
MATLAB Files used in Simulation are divided into different stages 
as follows:
A  Windowing and Segmenting. It converts the audio data in 

column vector and segment it into frames of given size using 
matfilesOpenfile.m, FileSize.m, FrameSelect.m.

B. Psychoacoustic Model. It normalized power spectrum of the
new signal and determines the PSD of tones (Ptm), PSD of
noise at location and location within critical band 
(Pnm_at_loc, loc), Masking threshold, Global masking 
threshold using Matfiles Dbinv.m, hz2bark.m, normalize.m, 
psd.m, findtones.m, noise_masker.m, maskjhreshold.m, 
global_threshold.m.

C. Extraction o f  Coefficients Using DWT: It extracts the 
coefficients using DWT and compresses them using 
threshold level calculated. It encodes the coefficients of DWT 
to eliminate the consecutive zeroes.

D. Quantization: Quantize the encoded coefficients using 
vector quantization.

E. Inverse Quantization: Inverse quantize the quantized 
coefficients to get the encoded DWT coefficients.

E Decompression: Decode the inverse quantized coefficients 
and reconstruct the signal.

G. Performance measurement. Performance of the proposed 
system is calculated in terms of Compression Score, Signal to 
noise ratio (SNR), peak SNR (PSNR), normalized root mean 
square error (NRMSE) plots are shown in Figure-4,5 and 6.

In the proposed audio signal compression algorithm, the 
compression score for different test signals is calculated as

Compression Ratio (C) = Length (x(n)) /Length(CWC) (3.1)

where x(n) is the speech signal and CWC is the Compressed 
Wavelet transform Code. Compression score for different types of 
wavelets for three best score male voice signal, female voice signal 
and instrumental sound signal are obtained from source code 
developed in MATLAB and are tabulated in Table 1. The accuracy 
of reconstructed signal is determined by measuring distortion in 
the decoded signal in terms of SNR, PSNR and NRMSE. These 
related measures of SNR, PSNR and NRMSE are defined as

/ 2 \
Signal to Noise Ratio (SNR) = lOlogj

k
(3.2)

where ox2 is the mean square of the speech signal, ae is the mean 
square difference between the original and reconstructed signals,

Peak Signal to Noise Ratio (P ) = ioiog„ NX1 (3.3)
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where N is the length of the reconstructed signal, X is the 
maximum absolute value of the signal x, |x-r|2 is the energy of the 
difference between original and reconstructed signals,

Normalized Root Mean Square Error

) (x(n) r (nyf~

V W«) (n))2 (3'4)
where x(n) is the original speech signal r(n) is reconstructed 
speech signal and |ix(n) is the mean of the speech signal. These 
measures vary with the level of truncation and thus different 
applications for different quality of signals for different 
compression can be achieved. Plot for SNR, PSNR, NRMSE with 
respect to level of truncation are shown in Figure 4, 5 and 6. These 
measures SNR, PSNR, NRMSE for different DWT with constant 
truncation are calculated for three best score male voice test 
signal, for three best score female voice test signal and for three 
best score instrumental sound test signal and extra measured & 
NR, PSNR, NRMSE for different DWT with constant truncation are 
arranged inTable2 (a),Table2 (b) andTable2(c) respectively.

Plots for original and compressed signal for best score male voice 
signal, female voice signal and instrumental sound signed are 
shown in Figure 7, Figure 8 and Figure 9 respectively. In these
figures plot in red is for original signal and plot in yellow is for
com p ressed  signal. T h ese  p lo ts are p lotted  w ith  re feren ce  to
sample on x-axis. Figure 7 shows plots of original and compressed 
signal for male voice for 71680 samples. Figure 8 shows plots of 
original and compressed signal for female voice for 51200 
samples. Figure 9 shows plots of original and compressed signal 
for instrumental sound for 40960 samples. The proposed audio 
signal compression algorithm achieves signal to noise ratio of 
17.45 db and Peak signal to noise ratio of 98.45 db at a

compression ratio of 3.98 using the Daubechies-10 wavelet 
transform with level 5 decomposition for male voice test [ 
signal. For female voice test signal it achieves signal to noise 
ratio of 14.39 db and Peak signal to noise ratio of 96.24 db at a 
compression ratio of 3.65 using the Daubechies-10 wavelet | 
transform with decomposition at 5 level, and for 1 
instrumental sound test signal it achieves signal to noise ratio 
of 19.53 db and Peak signal to noise ratio of 98.98 db at a 
compression ratio of 3.5 using the Daubechies-10 wavelet 
transform with decomposition at 5 level.

CONCLUSION

The performance of the proposed scheme in terms of 
compression scores and signal quality is comparable with 
other good techniques such as MUSICAM and PAC. The 
MUSICAM compresses audio signals of 700 kbps down to 
around 256 kbps i.e. compression score of about 2.74 without 
audible impairments where as PAC coder provides 
compression ratio of about 1.823 for transparent or near 
transparent quality coding, where as the proposed scheme 
has compression score of 3.65, which is higher than the 
existing schemes [1] [2]. In addition, in this scheme the 
compression ratio is variable, while most other compression 
techniques have fixed compression ratios. The VQ used
reduces storage and searching complexity. Thus the
p ro p o s e d  s c h e m e  is  m o re  s u ita b le  fo r  m u ltim e d ia
applications as it provides better compression with better 
quality of signal and reduced storage and searching 
complexity. This compression approach can be used in 
number of applications such as transmission of speech over 
mobile satellite communication, cellular telephony, voice 
mail systems and synthetic voice in toys that speak.

-------------------------------------------------------------------------------- 1
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Appendix

Type of 
wavelet

Male voice Female voice Instrumental sound

M l M2 M2 FI F2 F3 11 12 13

Harr 3.4583 3.2987 3.0651 3.3658 3.1532 3.0032 3.2458 3.0683 2.9742

Db4 3.7724 3.5021 3.3345 3.4765 3.2670 3.0975 3.3657 3.1582 3.0432

Db6 3.8802 3.5531 3.3980 3.5988 3.3543 3.1562 3.4660 3.2741 3.1476

Db8 3.8950 3.5910 3.4004 3.6352 3.4521 3.2374 3.4958 3.3058 3.1998

DblO 3.9753 3.7034 3.5145 3.6442 3.4983 3.2879 3.5013 3.3996 3.1145

Tablel: Compression Score for 09 different types of audio signals for different wavelet

Type of 
wavelet

Measures for Male Voice Measures for Male Voice Measures for Male Voice

Test Signal Ml Test Signal M2 Test Signal M3

SNR PSNR NRMSE SNR PSNR NRMSE SNR PSNR NRMSE

Harr 11.7428 92.7803 0.2587 10.5382 90.4738 0.4372 9.5328 88.1630 0.5281

Db4 16.5870 97.6245 0.1481 15.4092 95.3896 0.3762 14.2062 93.0752 0.4997

Db6 16.8722 97.9.98 0.1433 15.6583 95.6693 0.3502 14.4837 934078 0.4505

Db8 17.1963 98.0138 0.1399 16.0769 95.9968 0.2979 15.6729 93.8085 0.3989

DblO 17.4502 98.4877 0.1341 16.3654 96.4237 0.2078 15.9879 94.2628 0.2958

TABLE 2(a): Measures for Male Voice Test Signal for different DWT with constant truncation

Type of 
wavelet

Measures for Female Voice Measures for Female Voice Measures for Female Voice

Test Signal FI Test Signal F2 Test Signal F3

SNR PSNR NRMSE SNR PSNR NRMSE SNR PSNR NRMSE

Harr 10.0972 91.9450 0.3127 9.8593 89.6493 0.5318 8.6592 87.4392 0.6884

Db4 13.4386 95.2864 0.2128 12.2749 93.0421 0.4295 10.4923 91.5286 0.6052

Db6 13.9378 95.7947 0.2007 12.7328 93.4859 0.4012 10.8402 91.8740 0.5755

Db8 14.2855 96.1318 0.1931 13.0542 93.9207 0.3917 11.5287 92.0076 0.5003

DblO 14.3866 96.2324 0.1909 13.1657 94.1382 0.3583 11.8904 92.1152 0.4729

TABLE 2(b): Measures for Female Voice Test Signal for different DWT with constant truncation
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Type of 
Wavelet

Measures for Instrumental Measures for Instrumenta Measures for Instrumental

Sound Test 11 Sound Test Signal 12 Sound Test Signal 13

SNR PSNR NRMSE SNR PSNR NRMSE SNR PSNR NRMSE

Harr 12.0087 93.9877 0.2133 10.9803 91.6729 0.4287 8.9367 89.3572 0.59983

Db4 14.8465 96.8098 0.1901 12.3825 94.5392 0.3979 10.5393 92.6720 0.5037

Db6 15.0792 97.0424 0.1499 13.7639 95.4297 0.3692 11.6392 93.7820 0.4869

Db8 18.7398 97.7387 0.1413 16.4826 95.9845 0.3003 14.0639 93.7892 0.4148

DblO 19.5240 98.9875 0.1298 17.6793 96.5620 0.29683 15.6294 94.5620 0.3751

TABLE 2(c): Measures for Instrumental Sound Test Signal for different DWT with constant truncation

Input
Signal

Encoded
Signal

Figure 1(a) Block Diagram of Encoder Circuit

Encoded
Signal

Output
Signal

Figure 1(b) Block Diagram of Decoder Circuit

Input Digital 
Signal x(n)

LPF -► 2
LPF _w

*

HPF W------ >\

->X,[n]

-> X Jn ]

HPF
LPF ■>Xj[n]

HPF ► l 2 ------ ►X0[n]

Figure 2: Wavepacket Decomposition
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»

(0-22KHZ)

U.O

i
r~ j i i t j i

0.000.09 0.09-0.17 0.17-0.26 0.26-0.35 0.35-0.43 0.43-0.52 0.52-0.70 0.700.86 0.801.03 1.03-1.20 1.201.35
v t  t

Figure 3: Wavelet decomposition tree used in the audio code. The numbers in the figure refer to the lower and
higher cutoff frequencies in kHz of each band.

Signal to Noise Ratio
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Peak Signal to Noise Ratio

Figure 5: Plot for Peak Signal to Noise Ratio Vs Truncation for DblO for different test signals

Normalised Root Mean Square Error

Figure 6: Plot for NRMSE Vs Truncation for DblO for different test signals
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Original and compressed signals

Figure 7: Original and Compressed Waveform for male voice test signal

Original and compressed signals

xlO4
Figure 8 : Original and Compressed Waveform for Female voice test signal

Original and compressed signals

xlO
Figure 9: Original and Compressed Waveform for Instrumental sound test signal
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